Библиотека докуменов по охране труда и промышленной безопасности

Главная /

Документация. . Решение проблем повышения безопасности и энергосбережения в системах снабжения теплом и горячей водой

РЕШЕНИЕ ПРОБЛЕМ ПОВЫШЕНИЯ БЕЗОПАСНОСТИ И ЭНЕРГОСБЕРЕЖЕНИЯ В СИСТЕМАХ СНАБЖЕНИЯ ТЕПЛОМ И ГОРЯЧЕЙ ВОДОЙ

А. Ф. НЕДУГОВ, канд. техн. наук, М. А. КУРКУЛОВ (ООО «Прессмаш», г. Миасс)

Ежегодный рост числа аварий на объектах теплоэнергетики свидетельствует об износе основных фондов, который достиг критической отметки [1]. Для решения проблемы теплообменников, наряду с заменой изношенного оборудования и ремонтом тепловых систем, необходима также замена устаревшего оборудования. Использование парка физически и морально устаревших теплообменников приводит к существенным потерям теплоты, увеличению выброса загрязняющих веществ в атмосферу, росту парникового эффекта, снижению безопасности их эксплуатации. Большое энергопотребление существенно увеличивает себестоимость продукции, уменьшает ее конкурентоспособность. Тепло и горячая вода - самая затратная часть энергетического баланса предприятия (до 10 % себестоимости выпускаемой продукции) [2]. В то же время большое количество низкопотенциального пара (отработавший пар после паровых машин, вагоноразмораживателей, систем парового отопления, технологических процессов) выбрасывается в атмосферу, ухудшая условия жизнедеятельности. В связи с этим особую остроту и актуальность приобретают повышение безопасности, улучшение экологии и энергосбережения путем применения новых эффективных технологий и оборудования.

В настоящее время в системах теплофикации промышленных предприятий и коммунальной сферы наиболее распространены теплообменники поверхностного типа (водогрейные котлы, пароводяные кожухотрубные подогреватели, пластинчатые теплообменники) и пароводяные инжекторы (струйные аппараты ТСА, ПСА, «Фисоник», «Транссоник»).

Традиционные водогрейные котлы имеют значительную материалоемкость из-за низких коэффициентов теплопередачи от продуктов сгорания к нагреваемой воде, а общие потери теплоты в них составляют 30-40 % [3]. Недостатки кожухотрубных и пластинчатых теплообменных аппаратов - дорогой ремонт и зависимость от качества нагреваемой воды. При подогреве исходной воды из водоема в системе химической очистки на внутренних поверхностях латунных трубок образуются отложения, что приводит к повышенному расходу греющего пара, потере конденсата и значительному (до 60 %) снижению кпд. При потере герметичности в теплообменнике к пару может подмешиваться сырая вода, которая попадает в котел при возврате конденсата. Очистка внутренних каналов теплообменника от накипи - дорогостоящий и трудоемкий процесс. В частности, при разборке пластинчатых подогревателей повреждаются многочисленные резиновые уплотнительные прокладки, имеющие сложную форму. В результате часто (а при использовании клеевых прокладок всегда) требуется их замена, и это при том, что стоимость комплекта таких прокладок составляет около 30 % стоимости нового теплообменника.

В отличие от теплообменников поверхностного типа, в которых теплообмен между теплоносителем и нагреваемой водой осуществляется через стенку, в пароводяных инжекторах теплопередача от пара к воде происходит при их смешении, т. е. в процессе полной конденсации пара вся его внутренняя энергия передается воде. Пароводяные инжекторы представляют собой струйные аппараты, выполненные по классической схеме: паровое сопло для разгона рабочего пара до требуемых скоростей; приемная камера для подачи инжектируемой воды; камера смешения, где выравниваются скорости рабочего и инжектируемого потоков и происходит обратное преобразование кинетической энергии в потенциальную; диффузор для дальнейшего восстановления давления [4]. Такие аппараты, обладающие компактностью при высокой тепловой мощности и отсутствии потерь при теплопередаче, в последнее время получают широкое распространение. К факторам, ограничивающим их использование, можно отнести высокий уровень шума и ограниченный диапазон диаметров трубопроводов - не более 150 мм.

Сотрудники ООО «Прессмаш» и Магнитогорского металлургического комбината в 1999 г. разработали водоструйный паровой эжектор УМПЭУ, позволяющий обеспечить бесшумный ввод пара в поток воды и его конденсацию без вибраций и гидравлических ударов с одновременным расширением диапазона диаметров используемых трубопроводных систем до 500 мм. В отличие от пароводяных инжекторов, рабочее тело в УМПЭУ - нагреваемая вода, а инжектируемое - пар. Отход от классической гидродинамической схемы струйного аппарата заключается и в отсутствии камеры смешения между приемной камерой и диффузором [5].

УМПЭУ (рис. 1) состоит из конфузора 1, водяного сопла 2, приемной камеры 3, диффузора 10, камеры предварительного смешения пара с водой 4, установленной на подводе пара в приемную камеру, гасителя пульсаций давления 11, трубопровода с задвижкой 5 для перепуска части нагреваемой воды из широкой части конфузора в камеру предварительного смешения. На рис
Страница: [1] 2 3 ... 5
[0.0119 сек.]
СЛУЧАЙНОЕ